S.D. DAV PUBLIC SCHOOL SAMPLE QUESTION PAPER SESSION 2024-2025

Class: IX Subject: MATHEMATICS Maximum Marks: 80 Time: 3 Hrs

Q.No	Question	Marks
	SECTION A (Section A consists of 20 questions of 1 mark each)	
1.	Which of the following statements is true? A. Every irrational number can be represented as a fraction.	
	B. Every irrational number can be represented with the help of decimals.C). Every rational number can be represented as a terminating decimal.D. Every rational number can be represented as an integer.	1
2.	Find the value of $(1296)^{0.17} \times (1296)^{0.08}$. (a) 2 (b) 4 (c) 3 (d) 6	1
3.	If $\left(\frac{2}{3}\right)^{x} \times \left(\frac{3}{2}\right)^{2x} = \frac{81}{16}$, then the value of x is (a) 1 (b) 2 (c) 3 (d) 4	1
4.	The point (1, -1), (2, -2), (4, -5), (-3,-4) lies in: (a) II quadrant (b) III quadrant (c) IV quadrant (d) do not lie in the same quadrant	1
5.	Any solution of the linear equation $2x + 0y + 9 = 0$ in two variables is of the form (a) $\left(-\frac{9}{2}, m\right)$ (b) $\left(n, -\frac{9}{2}\right)$ (c) $\left(0, -\frac{9}{2}\right)$ (d) $\left(-9, 0\right)$	1
6.	A linear equation in two variables x and y is of the form $ax + by + c = 0$, where (a) $a \neq 0, b \neq 0$ (b) $a \neq 0, b = 0$ (c) $a = 0, b \neq 0$ (d) $a = 0, c = 0$	1

19.	 Assertion(A): The angles of a triangle are in the ratio 2 : 3 : 4. The largest angle of the Reason(R): The sum of all the interior angles of a triangle is 180 °. (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A). (b) (b)Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A). (c) (c)Assertion (A) is true but reason (R) is false. (d) (d)Assertion (A) is false but reason (R) is true. 	1
20.	 Assertion(A): The sides of a triangle are 3 cm,4 cm and 5 cm.Its area is 6 square cm. Reason(R): If 2s=(a+b+c) where a,b, c are the sides of the triangle then area = √(s-a)(s-b)(s-c). (a) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A). (b) (b)Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A). (c) (c)Assertion (A) is true but reason (R) is false. (d) (d)Assertion (A) is false but reason (R) is true. 	1
21.	SECTION-B (Section B consists of 5 questions of 2 marks each) If $x = \frac{5-\sqrt{3}}{5+\sqrt{3}}$ and $y = \frac{5+\sqrt{3}}{5-\sqrt{3}}$ Then find the value of (x-y)	2
22.	Express $0.6+0.\overline{7}+0.\overline{47}$ in the form $rac{p}{q}$, where p and q are integers and $q eq 0$.	2
23.	Find K if x ⁵¹ +2x ⁶⁰ +3x+K is divisible by x+1	2

1		1
24.	Find the volume, curved surface area and the total surface area of a hemisphere of diameter 7 cm. OR A conical pit of top diameter 3.5 m is 12 m deep. What is its capacity in kilolitres?	2
25.	Plot the following points and write the name of the figure obtained by joining them in order: P(-3,2),Q(-7,-3),R(6,-3),S(2,2). OR, Plot the following points and check whether they are cooling or not. (1,3),(-1,-1)and(-2,-3).	2
26.	SECTION-C (Section-C consists of 6 questions of 3 marks each) Factorise : $x^3 - 23x^2 + 142x - 120$ OR, Factorize the polynomial: $8a^3 - b^3 - 12a^2b + 6ab^2$	3
27.	Find the values of a and b in each of $\frac{\sqrt{2}+\sqrt{3}}{3\sqrt{2}-2\sqrt{3}} = a - b\sqrt{6}$ OR, If $2^x = 3^y = 12^z$, show that $\frac{1}{z} = \frac{1}{y} + \frac{2}{x}$.	3
28.	If a transversal intersects two lines such that the bisectors of a pair of corresponding angles are parallel, then prove that the two lines are parallel.	3

	Fig. 6.21 OR, In the given figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that $\angle ROS = (\angle QOS - \angle POS).$		
29.	E and F are respectively the mid-points of the non-parallel sides AD and BC of a trapezium ABCD. Prove that EF AB and EF = (AB + CD)/2. OR ABCD is a rhombus and P, Q, R, S are mid-points of AB, BC, CD and DA respectively. Prove that quadrilateral PQRS is a rectangle.	3	
	II		
30.	The sides of a quadrilateral, taken in order are 5, 12, 14 and 15 meters respectively, and the angle contained by the first two sides is a right angle. Find its area. OR A triangle has sides 35 cm, 54 cm and 61 cm long. Find its area. Also, find the smallest of its altitudes.	3	
31.	If both (x-2) and (x - $\frac{1}{2}$) are factors of px ² +5x+r Prove that p=r	3	
	OR,		

	If the polynomia remainder whe in each case.	als (2x ³ +a) n divided	x²+3x-5) ar by (x-2), fi	nd (x ³ +x ² -2 nd the val	2x+a) leave ue of a. A	e the same	e mainder	
32	(Section D con The sum of eith is 180 degree.	sists of 4 er pair of	SEC I questio the oppos	ΓΙΟΝ-D ns of 5 n site angle	narks ead s of a cyc	ch) clic quadr	ilateral	5
33	Prove that the quadrilateral formed by joining the mid-points of the consecutive sides of a square is also a square. OR The line segment joining the midpoint of any two sides of a triangle is parallel to the third side and equal to half of it.				5			
34	Draw a histogram with f class interval frequency	requency poly 25 - 29 5	gon for the foll 30 - 34 15	owing data: 35 - 39 23	40 - 44 20	45 - 49 10	50 - 54 7	5
35	If a ,b ,c are $\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab}$ Prove that $x^3 + y$	all non =3. $x^{3} + z^{3} - 3$ $= \frac{1}{2}(x)$ $+ (z - z)$	Zero an OR, 3XYZ $(+Y + Z)[(-X)^2]$	$(x - Y)^2 +$	$-c = 0$, $(Y - Z)^2$	then pro	ove that	5
36.	SECTION-E (Section-E c Ajay lives in Delh 600 km from Dell	Case stu consists i, The city hi. Ajay u	dy based of 3 ques y of Ajay's sed to trav	d questions of stions of stather in vel this 60	ns are co 4 marks laws resid 0 km part	ompulso each) lence is ar ly by trai	ry. t Jaipur is n and partl <u>y</u>	1+1+2

	by car. He used to buy cheap items from Delhi and sale at Jaipur and also buying cheap items from Jaipur and sale at Delhi.Once From Delhi to Jaipur in forward journey he covered 2x km by train and the rest y km by taxi.But, while returning he did not get a reservation from Jaipur in the train. So first 2y km he had to travel by taxi and the rest x km by Train. From Delhi to Jaipur 1 took 8 hrs but in returning it took 10 hrs. Delieved 2x km y km y km	ý ne
37.	There was a circular park in Defence colony at Delhi. For fencing purpose pol A, B, C and D were installed at the circumference of the park.Ram tied wires From A to B, B to C and C to D and he managed to measure the A = 100° and $D = 80°$, G in the middle of the park is the center of the circle. Point O in the middle of the park is the center of the circle. V V V V V V V V	les), 1+1 +2
	Write any three properties of cyclic quadrilateral?	1+1

